Influence of Batch Cooling Crystallization on Mannitol Physical Properties and Drug Dispersion from Dry Powder Inhalers

نویسندگان

  • Waseem Kaialy
  • Hassan Larhrib
  • Martyn Ticehurst
  • Ali Nokhodchi
چکیده

This study provides, for the first time, an evaluation of the physicochemical properties of batch cooling crystallized mannitol particles combined with how these properties correlated with the inhalation performance from a dry powder inhaler (Aerolizer). The results showed that the type of polymorph changed from β-form (commercial mannitol) to mixtures of β+ δ-mannitol (cooling crystallized mannitol crystals). In comparison to mannitol particles, crystallized at a higher supersaturation degree, a lower degree of supersaturation favored the formation of mannitol crystals with a more regular and elongated habit, smoother surface, higher specific surface area, higher fine particle content, higher bulk density, and higher tap density. Cooling crystallized mannitol particles demonstrated considerably lower salbutamol sulfate−mannitol adhesion in comparison to commercial mannitol, with a linear reduction as surface roughness decreased and fines content increased. Also, mannitol crystals with smoother surfaces demonstrated a reduction in salbutamol sulfate content uniformity (expressed as %CV) within salbutamol sulfate−mannitol formulations. Despite the different physical properties, all mannitol products showed similar flow properties and similar emission of salbutamol sulfate upon inhalation. However, mannitol crystals grown from lower supersaturation (reduced roughness and increased fines) generated a finer aerodynamic size distribution and consequently deposited higher amounts of salbutamol sulfate on lower stages of the impactor. Regression analysis indicated linear relationships showing higher fine particle fraction of salbutamol sulfate in the case of mannitol particles having a more elongated shape, higher fines content, higher specific surface area, higher bulk density, and higher tap density. In conclusion, a cooling crystallization technique could be controlled to produce mannitol particles with controlled physical properties that could be used to influence aerosolization performance of a dry powder inhaler product.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of design on the performance of a dry powder inhaler using computational fluid dynamics. Part 2: Air inlet size.

This study investigates the effect of air inlet size on (i) the flowfield generated in a dry powder inhaler, and (ii) the device-specific resistance, and the subsequent effect on powder deagglomeration. Computational fluid dynamics (CFD) analysis was used to simulate the flowfield generated in an Aerolizer with different air inlet sizes at 30, 45, and 60 l/min. Dispersion performance of the mod...

متن کامل

Formulation of Biologically-Inspired Silk-Based Drug Carriers for Pulmonary Delivery Targeted for Lung Cancer

The benefits of using silk fibroin, a major protein in silk, are widely established in many biomedical applications including tissue regeneration, bioactive coating and in vitro tissue models. The properties of silk such as biocompatibility and controlled degradation are utilized in this study to formulate for the first time as carriers for pulmonary drug delivery. Silk fibroin particles are sp...

متن کامل

Dry powder inhaler device influence on carrier particle performance.

Dry powder inhalers (DPIs) are distinguished from one another by their unique device geometries, reflecting their distinct drug detachment mechanisms, which can be broadly classified into either aerodynamic or mechanical-based detachment forces. Accordingly, powder particles experience different aerodynamic and mechanical forces depending on the inhaler. However, the influence of carrier partic...

متن کامل

Influence of physical properties of carrier on the performance of dry powder inhalers

Dry powder inhalers (DPIs) offer distinct advantages as a means of pulmonary drug delivery and have attracted much attention in the field of pharmaceutical science. DPIs commonly contain micronized drug particles which, because of their cohesiveness and strong propensity to aggregate, have poor aerosolization performance. Thus carriers with a larger particle size are added to address this probl...

متن کامل

Vibration Technology for Active Dry-Powder Inhalers

Timothy M. Crowder, PhD, is chief technology officer at Oriel Therapeutics, Inc., PO Box 14087, Research Triangle Park, NC 27709, tel. 919.313.1290 ext. 11, fax 919.313.1295, [email protected]. ctive dry-powder inhalers (DPIs) for pulmonary drug delivery have been under development for at least 10 years, but to date no such device has been approved by FDA. Like propellant-driven me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015